Abstract

AbstractGeneration of low temperatures below 1 K has been required for applications and fundamental research, given this, development of new materials utilized for demagnetization cooling has extensively been performed in recent years. Here, we studied two polynuclear Gd3+-based molecular compounds of Gd0.33[Gd4(OH)4(OAc)3][Rh4Zn4(L-cys)12]·32H2O (1Gd) and Gd0.33[Gd4(OH)4(OAc)3][Ir4Zn4(L-cys)12]·28H2O (2Gd) (L-cys = L-cysteinate) which show paramagnetic even at low temperatures due to their frustrated arrangement of Gd3+ ions. We discuss the magnitude of the magnetocaloric effect (MCE) in them inferred from the isothermal magnetic entropy change ($${\Delta S}_{\text{M}}$$ Δ S M ) from isothermal magnetization data. The − $$\Delta S_{{\text{M}}}^{{{\text{max}}}}$$ Δ S M max of 1Gd and 2Gd are 15.15 J kg−1 K−1 and 17.49 J kg−1 K−1 occur at 2.0 K under an applied field from 0 to 7 T, respectively. We also discussed the results of heat capacity measurement under magnetic fields to confirm the validity of the entropy change for 1Gd. Furthermore, with an aim of detecting their MCE directly, we have developed a new non-magnetic and metal-free magnetocaloric measurement cell. The adiabatic temperature change ($$\Delta T_{{{\text{ad}}}}$$ Δ T ad ) occurs in a small amount of sample on an order of 102-microgram with the application and removal of various magnitude magnetic fields starting from several initial temperatures were detected directly, to evaluate the potential of them to be a refrigerant for an adiabatic demagnetization refrigerator. The instrumental design for direct measurements of MCE is described along with the construction details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.