Abstract
Theoretical analysis based on mean field theory indicates that solvent-induced interactions (i.e. structural forces due to the rearrangement of wetting solvent molecules) not considered in DLVO theory can induce the kinetic trapping of nanoparticles at finite nanoscale separations from a well-wetted surface, under a range of ubiquitous physicochemical conditions for inorganic nanoparticles of common materials (e.g., metal oxides) in water or simple molecular solvents. This work proposes a simple analytical model that is applicable to arbitrary materials and simple solvents to determine the conditions for direct particle-surface contact or kinetic trapping at finite separations, by using experimentally measurable properties (e.g., Hamaker constants, interfacial free energies, and nanoparticle size) as input parameters. Analytical predictions of the proposed model are verified by molecular dynamics simulations and numerical solution of the Smoluchowski diffusion equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.