Abstract

We outline a simple continuum model of the stresses that result from the coalescence and growth of islands during deposition of a polycrystalline thin film. Our model includes a detailed description of attractive forces between neighboring islands, and also accounts for mass transport along surfaces and grain boundaries. The finite element method is used to calculate the island shape changes as well as the stresses and displacements in the film during the growth process. The model reproduces several experimental observations, including the variation of stress with film thickness, the range of observed growth stresses, and the effects of deposition flux and grain boundary diffusivity on stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.