Abstract

Accident data show that lower limb is one of the most frequently injured body parts for cyclists in vehicle collisions. However, studies of cyclist lower limb injuries and protection are still sparse. Therefore, the purpose of this study is to investigate the kinematics and injury mechanism of cyclist lower limb in vehicle-to-bicycle collisions considering different impact boundary conditions. To achieve this, the finite element (FE) modeling approach and an FE human body lower limb model with detailed muscles were employed, and impact boundary conditions with different vehicle front-end shapes and cycling postures were considered. Predictions of lower limb kinematics, knee ligament elongation and bending moment of upper and lower leg were used for analysis. The simulation results show that cycling posture has a significant influence on cyclist lower limb kinematics and injury risk, lateral bending toward the direction of vehicle or vehicle moving combining with lateral shearing is the main mechanism for cyclist knee ligament injuries, and injuries to long bones of cyclist leg in vehicle impacts could form lateral bending at both directions. The findings suggest that the influence of cycling posture and distinct difference in injury mechanism between cyclist and pedestrian should be considered in the assessment of vehicle safety design for cyclist lower limb protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call