Abstract

According to the statistics, lower limb injuries are the second most frequent region of traffic injuries. For the in-depth study of the biomechanical response and injury mechanism of pedestrian lower limb, the pedestrian lower limb biomechanical Finite Element (FE) model with high biological fidelity was developed and verified. By applying the proposed model, simulation studies were conducted to investigate pedestrian lower limb dynamic responses and injuries under different bumper foam filling structures and bumper collision heights during lateral impact. Simulation results demonstrated that filling the cushion foam between the bumper cover and the anti-collision beam can effectively reduce the injury index of pedestrian's lower limbs, and the trapezoidal foam structure gives better protection effect. In addition, appropriately lowering the bumper collision height can improve the car's friendliness to pedestrian's lower limbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.