Abstract

Objective. In pedestrian traumas, lower limb injuries occur under lateral shearing and bending at the knee joint level. One way to improve injury mechanisms description and consequently knee joint safety is to evaluate the ultimate shearing and bending levels at which ligaments start being injured. Methods. As such data cannot easily and accurately be recorded clinically or during experiments, we show in this article how numerical simulation can be used to estimate such thresholds. This work was performed with the Lower Limb Model for Safety (LLMS) in pure lateral bending and shearing conditions, with an extended range of impact velocities. Results. One result concerns the ultimate knee lateral bending angle and shearing displacement measurements for potential failure of ligaments (posterior cruciate, medial collateral, anterior cruciates and tibial collateral). They were evaluated to be close to 16° and 15 mm, respectively. Conclusion. The lower leg model used in this study is an advanced FE model of the lower limb, validated under various situations. Its accurate anatomical description allows a wide range of applications. According to the validity domain of the model, it offered a valuable tool for the numerical evaluation of potential injuries and the definition of injury risk criterion for knee joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.