Abstract
In the past, designers relied primarily on past experience and reference to industry standard thresholds to design spaces. Such design often results in spaces that do not meet the needs of users. The purpose of this paper is to investigate the process and way of generating design parameters by constructing a BP neural network algorithm for spatial design. From the perspective. This paper adopts an experimental research method to take a kindergarten with a large number of complex needs in space as the object of study, and through the BP neural network algorithm in machine learning, the correlation between environmental behavior parameters and spatial design parameters is imprinted. The way of generating spatial design parameters is studied. In the future, the corresponding spatial design parameters can be derived by replacing specific environmental behavior influence factors, which can be applied to a wider range of scenarios and improve the efficiency of designers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.