Abstract

We study the effect of Kerr anharmonicity on the symmetry-breaking phenomena of coupled quantum oscillators. Two types of symmetry-breaking processes are studied, namely, the inhomogeneous steady state (or quantum oscillation death state) and quantum chimera state. Remarkably, it is found that Kerr nonlinearity hinders the process of symmetry breaking in both the cases. We establish our results using direct simulation of the quantum master equationand analysis of the stochastic semiclassical model. Interestingly, in the case of quantum oscillation death, an increase in the strength of Kerr nonlinearity tends to favor the symmetry and at the same time decreases the degree of quantum mechanical entanglement. This paper presents a useful mean to control and engineer symmetry-breaking states for quantum technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.