Abstract

An important transition from a homogeneous steady state to an inhomogeneous steady state via the Turing bifurcation in coupled oscillators was reported recently [Phys. Rev. Lett. 111, 024103 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.024103]. However, the same in the quantum domain is yet to be observed. In this paper, we discover the quantum analog of the Turing bifurcation in coupled quantum oscillators. We show that a homogeneous steady state is transformed into an inhomogeneous steady state through this bifurcation in coupled quantum van der Pol oscillators. We demonstrate our results by a direct simulation of the quantum master equation in the Lindblad form. We further support our observations through an analytical treatment of the noisy classical model. Our study explores the paradigmatic Turing bifurcation at the quantum-classical interface and opens up the door toward its broader understanding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.