Abstract

We report the experimental results of a turbulent electric field driven by Kelvin-Helmholtz instability associated with laser produced collisionless shock waves. By irradiating an aluminum double plane target with a high-power laser, counterstreaming plasma flows are generated. As the consequence of the two plasma interactions, two shock waves and the contact surface are excited. The shock electric field and transverse modulation of the contact surface are observed by proton radiography. Performing hydrodynamic simulations, we reproduce the time evolutions of the reverse shocks and the transverse modulation driven by Kelvin-Helmholtz instability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.