Abstract
Intercropping affects soil microbial community structure significantly; however, the effects on understory medicinal plants in karst areas remain unclear. We investigated the effects of four intercropping systems (Moso bamboo, Chinese fir, bamboo-fir mixed forest, and forest gap) on the rhizosphere microbial communities of giant lily (Cardiocrinum giganteum), an economically important medicinal plant in China. We assessed the intercropping impact on rhizosphere microbial diversity, composition, and co-occurrence networks and identified key soil properties driving the changes. Bacterial and fungal diversity were assessed by 16S rRNA and ITS gene sequencing, respectively; soil physicochemical properties and enzyme activities were measured. Moso bamboo system had the highest fungal diversity, with relatively high bacterial diversity. It promoted a distinct microbial community structure with significant Actinobacteria and saprotrophic fungi enrichment. Soil organic carbon, total nitrogen, and available potassium were the most influential drivers of microbial community structure. Co-occurrence network analysis revealed that the microbial network in the Moso bamboo system was the most complex and highly interconnected, with a higher proportion of positive interactions and a greater number of keystone taxa. Thus, integrating Moso bamboo into intercropping systems can enhance soil fertility, microbial diversity, and ecological interactions in the giant lily rhizosphere in karst forests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.