Abstract
Microbial community diversity and structure, which underpin soil function, can in turn be impacted by land-use practices. In this study an agricultural site with consistent long term (+20 years) treatments and a non-agricultural site (grassland) were investigated to determine land-use effects on soil microbial community structure and function. We used a variety of methods to investigate microbial community structure, biomass, potential and actual function and soil physicochemical properties. All soils showed similar levels of bacterial diversity although community structure (bacterial, archaeal, fungal) differed under all treatments. Overall, our results indicate that despite evident differences in microbial community structure among all soils examined, there was little functional difference among soils under cultivation in the various cropping treatments. There were, however, clear differences in both function and structure between the agricultural and non-agricultural soils. All soils were very water limited, which was reflected in negligible actual rates of nitrification, denitrification and nitrogen fixation. Non-agricultural soils showed higher rates of potential nitrification, lower rates of potential denitrification, higher levels of C and N and higher microbial biomass. These findings have implications for understanding how land-use practices affect soil microbial community structure and function and ecosystem service provision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.