Abstract

The algorithm based on Kalman filtering was proposed to calculate yaw steering angles of spaceborne Synthetic Aperture Radar (SAR) systems. We establish the process equation and the observation equation by proper design. Performance analysis and computer simulations demonstrate that Kalman filtering may take advantages in both numerical precision and computational efficiency. It therefore can be applied to SAR satellites in a wide range of microwave bands (C, X, Ku) along noncircular orbits. In addition, an efficient algorithm based on simple interpolation may be employed in practice. Since the Kalman filter is linear in nature, the fast computation makes possible the implementation of accurate onboard processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.