Abstract
The development of continuous glucose monitoring (CGM) systems has enabled people with type 1 diabetes mellitus (T1DM) to track their glucose trajectory in real-time and inspired research in personalised glucose prediction. In this paper, our aim is to predict postprandial abnormal-glycemia events. Different from prior research which focuses on hypoglycemia only, we make the first attempt to establish our problem as the joint prediction of hyperglycemia and hypoglycemia. On this basis, we propose a machine learning model that learns from the pattern of 1 hour past glucose and makes predictions for the two tasks simultaneously using a unified backbone. Key benefits of our methodology include 1) requiring only the CGM sequence as the input, thus making it more widely applicable than other counterparts using extra inputs such as the nutrition details, and 2) minimising the computational cost as the two tasks are unified into a single model. Our experiments on the openly available OhioT1DM dataset achieve state-of-the-art performance (Matthew's correlation coefficient of 0.61 for hyperglycemia and 0.48 for hypoglycemia). To encourage further study, we release our codes at https://github.com/r-cui/PostprandialHyperHypoPrediction under the MIT license.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.