Abstract

Cadmium (Cd) pollution ranks first in soils (7.0%) and microplastics usually have a significant adsorption capacity for it, which could pose potential threats to agricultural production and human health. However, the joint toxicity of Cd and microplastics on crop growth remains largely unknown. In this study, the toxic effects of Cd2+ and two kinds of microplastic leachates, polyvinyl chloride (PVC) and low-density polyethylene (LDPE), on wheat seed germination and seedlings' growth were explored under single and combined conditions. The results showed that Cd2+ solution and two kinds of microplastic leachates stimulated the wheat seed germination process but inhibited the germination rate by 0-8.6%. The combined treatments promoted wheat seed germination but inhibited the seedlings' growth to different degrees. Specifically, the combination of 2.0mg L-1 Cd2+ and 1.0 mgC L-1 PVC promoted both seed germination and seedlings' growth, but they synergistically increased the antioxidant enzyme activity of seedlings. The toxicity of the PVC leachate to wheat seedlings was stronger than LDPE leachate. The addition of Cd2+ could alleviate the toxicity of PVC leachate on seedlings, and reduce the toxicity of LDPE leachate on seedlings under the same concentration class combinations but aggravated stress under different concentration classes, consistent with the effect on seedlings' growth. Overall, Cd2+, PVC, and LDPE leachates have toxic effects on wheat growth, whether treated under single or combined treatments. This study has important implications for the joint toxicity of Cd2+ solution and microplastic leachates in agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call