Abstract

Nine urban intertidal regions in Burrard Inlet, Vancouver, British Columbia, Canada, were sampled for plastic debris. Debris included macro and micro plastics and originated from a wide diversity of uses ranging from personal hygiene to solar cells. Debris was characterized for its polymer through standard physiochemical characteristics, then subject to a weak acid extraction to remove the metals, zinc, copper, cadmium and lead from the polymer. Recently manufactured low density polyethylene (LDPE), nylon, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS) and polyvinyl chloride (PVC) were subject to the same extraction. Data was statistically analyzed by appropriate parametric and non-parametric tests when needed with significance set at P < 0.05. Polymers identified in field samples in order of abundance were; PVC (39), LDPE (28), PS (18), polyethylene (PE, 9), PP (8), nylon (8), high density polyethylene (HDPE, 7), polycarbonate (PC, 6), PET (6), polyurethane (PUR, 3) and polyoxymethylene (POM, 2). PVC and LDPE accounted for 46% of all samples. Field samples of PVC, HDPE and LDPE had significantly greater amounts of acid extracted copper and HDPE, LDPE and PUR significantly greater amounts of acid extracted zinc. PVC and LDPE had significantly greater amounts of acid extracted cadmium and PVC tended to have greater levels of acid extracted lead, significantly so for HDPE. Five of the collected items demonstrated extreme levels of acid extracted metal; greatest concentrations were 188, 6667, 698,000 and 930 μgg-1 of copper, zinc, lead and cadmium respectively recovered from an unidentified object comprised of PVC. Comparison of recently manufactured versus field samples indicated that recently manufactured samples had significantly greater amounts of acid extracted cadmium and zinc and field samples significantly greater amounts of acid extracted copper and lead which was primarily attributed to metal extracted from field samples of PVC. Plastic debris will affect metals within coastal ecosystems by; 1) providing a sorption site (copper and lead), notably for PVC 2) desorption from the plastic i.e., the “inherent” load (cadmium and zinc) and 3) serving as a point source of acute trace metal exposure to coastal ecosystems. All three mechanisms will put coastal ecosystems at risk to the toxic effects of these metals.

Highlights

  • Rates of plastic production have increased 20 fold since 1964 which has resulted in an estimated 311 million tonnes of plastics within the ocean as of 2014 [1]

  • An important aspect of our collection was that items were both greater and less than 5 mm with some just at the 5 mm limit that distinguished macro from micro plastics

  • Collected samples represented the transition of macro plastics to micro plastics

Read more

Summary

Introduction

Rates of plastic production have increased 20 fold since 1964 which has resulted in an estimated 311 million tonnes of plastics within the ocean as of 2014 [1]. Further estimates are that at current rates of plastic production, by 2050, the total mass of plastics will outweigh the biomass of fish[1]. Plastic materials became integrated into all aspects of a modern human lifestyle. The very nature of the plastic which provides all of its multiple uses leads to their permanent nature and accumulation within ocean ecosystems. The result is possibly one of the greatest environmental challenges we as a society have been presented with; what are the impacts of plastics on ocean ecosystems and once identified, can we reverse or mitigate these negative impacts?

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call