Abstract

AbstractFor the approximate solution of ill‐posed inverse problems, the formulation of a regularization functional involves two separate decisions: the choice of the residual minimizer and the choice of the regularizor. In this paper, the Kullback–Leibler functional is used for both. The resulting regularization method can solve problems for which the operator and the observational data are positive along with the solution, as occur in many inverse problem applications. Here, existence, uniqueness, convergence and stability for the regularization approximations are established under quite natural regularity conditions. Convergence rates are obtained by using an a priori strategy. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.