Abstract

With the development of new energy vehicles, the joining of lightweight alloys has received more attention. Self-piercing riveting experiments of aluminum alloy and high-strength steel sheets were performed to analyze the effects of rivet height and laying order of metal sheets on the joining quality in the work. The forming surface, cross-sectional morphology, static tensile property, fatigue property, failure mode, and mechanism were analyzed. The results show that AA5052 alloy and SPFC440 steel can be joined effectively by self-piercing riveting, and there is good contact between rivet head and sheet surfaces. When the rivet is 2.5–3.5 mm higher than the total thickness of two layers sheets, the rivet leg flares symmetrically without cracks or buckling, and the lower sheet completely encapsulates the joint button. The joints have better static tensile properties when the rivet is about 3 mm higher than the thickness of two sheets. The higher static strength is obtained when the aluminum alloy is placed at the lower position. The rivet legs fall off from the lower sheets for all the samples in the tensile tests, which is independent of the rivet height and laying order of metal sheets. The fatigue strength of the sample with the rivet height of 7 mm is the greatest, and the fatigue cracks always occur on the aluminum sheet under all experimental conditions. The findings in this work can help the practical application of self-piercing riveting for aluminum/steel sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.