Abstract

Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth's surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation. Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < delta(61)Cu < 6.99) in comparison to the terrestrial crust (delta(65)Cu approximate to 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated, (delta(65)Cu approximate to 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (delta(65)Cu approximate to 0). An increase of delta(65)Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (delta(66/64)Zn up to 2.49 parts per thousand). This difference of behavior between Cu and Zn is predicted in a diffusion-limited regime, where the magnitude of the isotopic fractionation is regulated by the competition between the evaporative flux and the diffusive flux at the diffusion boundary layer. Due to the difference of ionic charge in silicates (Zn(2+) vs. Cu(+)), Cu has a diffusion coefficient that is larger than that of Zn by at least two orders of magnitude. Therefore, the larger isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their respective chemical diffusivity. (C) 2009 Elsevier Ltd. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.