Abstract

Copper shows limited isotopic variation in equilibrated mantle-derived silicate rocks, but large isotopic fractionation during kinetic processes. For example, lunar and terrestrial samples that have experienced evaporation were found to have an isotopic fractionation of up to 12.5‰ in their 65Cu/63Cu ratios, while komatiites, lherzolites, mid-ocean ridge and ocean island basalts show negligible Cu isotope fractionation as a result of equilibrium partial melting and crystal fractionation. The contrast between the observed magnitudes of equilibrium and kinetic isotope fractionation for Cu calls for a better understanding of kinetic Cu isotope fractionation. One of the mechanisms for creating large kinetic isotopic fractionation even at magmatic temperatures is diffusion. In this study, we performed Cu isotopic measurements on Cu diffusion couple experiments to constrain the beta factor for Cu isotopic fractionation by diffusion. We demonstrate a Monte Carlo approach for the regression and error estimation of the measured isotope profiles, which yielded beta values of 0.16 ± 0.03 and 0.18 ± 0.03 for the two experimental charges measured. Our results are subsequently applied to a quantitative model for the evaporation of a molten sphere to discuss the role of diffusion in affecting the bulk Cu isotopic fractionation between liquid and vapor during evaporation. We apply the model to Cu evaporation experiments and tektite data to show that convection primarily governs mass transport for evaporation during tektite formation. In addition, we show that Cu isotopes can be used as a tool to test the role of kinetics during various magmatic processes such as magmatic sulfide ore deposit formation, porphyry-type ore deposit formation, and fluid-rock interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.