Abstract

Intermolecular (13)C kinetic isotope effects (KIEs) for the Roush allylboration of p-anisaldehyde were determined using a novel approach. The experimental (13)C KIEs fit qualitatively with the expected rate-limiting cyclic transition state, but they are far higher than theoretical predictions based on conventional transition state theory. This discrepancy is attributed to a substantial contribution of heavy-atom tunneling to the reaction, and this is supported by multidimensional tunneling calculations that reproduce the observed KIEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.