Abstract

Variational transition state theory and semiclassical adiabatic ground-state transmission coefficients are applied to calculate the kinetic isotope effects for D and T substitution in the reaction Cl+H2 at 245–445 K. The calculated isotope effects differ significantly from those calculated previously using conventional transition state theory and semiempirical potential energy surfaces. We use variational transition state theory and conventional transition state theory with the Wigner tunneling correction to adjust three new semiempirical surfaces to the experimental data. No one set of calculations is completely successful. The potential energy surfaces that are most successful at predicting the HD/DH intramolecular kinetic isotope effect have the earliest saddle points (the saddle points are collinear with R‡Cl–H=2.64–2.78a0, R‡H–H=1.88–1.72a0). For each surface studied except one, the canonical variational transition states are located past the saddle point for some of the isotopic reactions and earlier than the saddle point for others. The exceptional surface is the one of Valencich and co-workers; that surface has an early saddle point, but the variational transition states are always earlier than the saddle point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.