Abstract

The direct carboxylation of aldehydes with CO2 is rare due to the polarity mismatch between these two electrophilic substrates. To address this challenge, we propose a sequential approach for synthesizing α-ketoacids from commercially available aldehydes by integrating umpolung and CO2 shuttling strategies. This transition metal-free shuttle carboxylation method enables the transfer of CO2 from triphenylacetic acid potassium salt to thioacetal, eliminating the need for handling pressurized CO2 gas or using specialized equipment, while also enhancing the reaction's functional group tolerance. Furthermore, the use of stoichiometric or slightly excess amounts of triphenylacetic acid potassium salt as a formal CO2 donor makes it suitable for complete 13C labeling of α-ketoacids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.