Abstract
BackgroundPolychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs.ResultsThe original contaminated soil contained low loads of few fungal species mostly belonging to the Scedosporium, Penicillium and Aspergillus genera. The fungal load and biodiversity generally decreased throughout the aerobic treatment. None of the 21 strains isolated from the treated soil were able to grow on biphenyl (200 mg L-1) or a mixture of 2-chlorobiphenyl, 4,4'-dichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl (20 mg L-1 each) as sole carbon sources. However, 16 of them grew in a mineral medium containing the same PCBs mixture and glucose (10 g L-1). Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani. They are the first PCB degrading strains of such species reported so far in the literature.ConclusionThe native mycoflora of the actual site aged heavily contaminated soil was mainly constituted by genera often reported as able to biodegrade organopollutants. It was generally remarkably reduced after the biotreatment, which however resulted in the selection of few mitosporic fungal species able to biodegrade PCBs. This is the first study in which an extensive characterisation of the cultivable indigenous mycoflora of an actual site aged PCB contaminated soil, as well as its changes upon soil bioremediation treatment, was conducted. Moreover, this is the first paper in which 5 strains ascribable to 4 mitosporic species able to biodegrade PCB are reported in the literature.
Highlights
Polychlorinated biphenyls (PCBs) are widespread toxic pollutants
Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani
It was generally remarkably reduced after the biotreatment, which resulted in the selection of few mitosporic fungal species able to biodegrade PCBs
Summary
Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs. Polychlorinated biphenyls (PCBs) are highly toxic priority pollutants widespread in several former industrial sites and related terrestrial and aquatic habitats [1,2]. Little is known about the PCB biodegradation potential of fungi [11,12,13,14], despite of their well documented ability to biodegrade a large variety of aromatic priority pollutants [15] and their advantages over the bacterial systems in organopollutant removal from complex environmental matrices (i.e. production of robust nonspecific extracellular enzymes and free radical attack system, that can degrade poorly bioavailable or water insoluble complex mixtures of organic pollutants), that make them unique and of great potential in the bioremediation [16]. Whereas mitosporic fungi have been rarely considered for PCBs degradation despite of their biotransformation capabilities [20,21,22]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have