Abstract

Studies of environmental and toxic effects of polychlorinated biphenyls (PCBs) are ideally performed with PCB mixtures reflecting the composition of environmental PCB profiles to mimic actual effects and to account for complex interactions among individual PCB congeners. Unfortunately, only a few laboratory studies employing synthetic PCB mixtures have been reported, in part because of the challenges associated with the preparation of complex PCB mixtures containing many individual PCB congeners. The objective of this study was to develop a PCB mixture that resembles the average PCB profile recorded from 1996 to 2002 at a satellite station of the Integrated Atmospheric Deposition Network located at the Illinois Institute of Technology (IIT) in Chicago, Illinois, using commercial PCB mixtures. Initial simulations, using published Aroclor profiles, showed that a mixture containing 65% Aroclor 1242 and 35% Aroclor 1254 was a good approximation of the target profile. A synthetic Chicago air mixture (CAM) was prepared by mixing the respective Aroclors in this ratio, followed by GC/MS/MS analysis. Comparison of the PCB profile of the synthetic mixture with the target profile suggests that the synthetic PCB mixture is a good approximation of the average IIT Chicago air profiles (similarity coefficient cos θ = 0.82; average relative percent difference = 84%). The synthetic CAM was also a reasonable approximation of the average of 184 PCB profiles analyzed in 2007 at 37 sites throughout Chicago as part of the University of Iowa Superfund Basic Research Program (isbrp), with a cos θ of 0.70 and an average relative percent difference of 118%. While the CAM and the two Chicago air profiles contained primarily di- to pentachlorobiphenyls, higher chlorinated congeners, including congeners with seven or eight chlorine atoms, were underrepresented in the synthetic CAM. The calculated TCDD toxic equivalency quotients of the synthetic CAM (2.7 ng/mg PCB) and the IIT Chicago air profile (1.6 ng/mg PCB) were comparable, but lower by two orders of magnitude than the isbrp Chicago air profile (865 ng/mg PCB) due to surprisingly high PCB 126 levels in Chicago air. In contrast, the calculated neurotoxic equivalency quotients of the CAM (0.33 mg/mg PCB) and the two Chicago air profiles (0.44 and 0.30 mg/mg PCB, respectively) were similar. This study demonstrates the challenges and methods of creating and characterizing synthetic, environmental mixtures of PCBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.