Abstract

The measurement problem dates back to the dawn of quantum mechanics. Here, we measure a quantum dot electron spin qubit through off-resonant coupling with a highly redundant ancilla, consisting of thousands of nuclear spins. Large redundancy allows for single-shot measurement with high fidelity ≈99.85%. Repeated measurements enable heralded initialization of the qubit and backaction-free detection of electron spin quantum jumps, attributed to burstlike fluctuations in a thermally populated phonon bath. Based on these results we argue that the measurement, linking quantum states to classical observables, can be made without any "wave function collapse" in agreement with the Quantum Darwinism concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.