Abstract

This paper intends to clarify some issues in the theory of quantum measurement by taking advantage of the self-consistent quantum formulation of nonlinear optics. A quantum-nondemolition measurement of the photon number of an optical pulse can be performed with a nonlinear Mach-Zehnder interferometer followed by a balanced detector. The full quantum-mechanical treatment shows that the shortcut in the description of the quantum-mechanical measurement, the so-called ``collapse of the wave function,'' is not needed for a self-consistent interpretation of the measurement process. Coherence in the density matrix of the signal to be measured is progressively reduced with increasing accuracy of the photon-number determination. The quantum-nondemolition measurement is incorporated in the double-slit experiment and the contrast ratio of the fringes is found to decrease systematically with increasing information on the photon number in one of the two paths. The ``gain'' in the measurement can be made arbitrarily large so that postprocessing of the information can proceed classically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call