Abstract

The criteria for the existence of a glass transition in a planar vortex array with quenched disorder are studied. Applying a replica Bethe ansatz, we obtain for self-avoiding vortices the exact quenched average free energy and effective stiffness which is found to be in excellent agreement with recent numerical results for the related random bond dimer model [C. Zeng, P. L. Leath, and T. Hwa, Phys. Rev. Lett. 83, 4860 (1999)] Including a repulsive vortex interaction and a finite vortex persistence length xi, we find that for xi-->0 the system is at all temperatures in a glassy phase; a glass transition exists only for finite xi. Our results indicate that planar vortex arrays in superconducting films are glassy at presumably all temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.