Abstract

An irregular lattice model is proposed for simulating quasistatic fracture in softening materials. Lattice elements are defined on the edges of a Delaunay tessellation of the medium. The dual (Voronoi) tessellation is used to scale the elemental stiffness terms in a manner that renders the lattice elastically homogeneous. This property enables the accurate modeling of heterogeneity, as demonstrated through the elastic stress analyses of fiber composites. A cohesive description of fracture is used to model crack initiation and propagation. Numerical simulations, which demonstrate energy-conserving and grid-insensitive descriptions of cracking, are presented. The model provides a framework for the failure analysis of quasibrittle materials and fiber-reinforced brittle-matrix composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.