Abstract

This paper addresses critical stress at the propagation of a fiber-bridged matrix crack of arbitrary length in fiber-reinforced brittle matrix composites. The formulation of the problem follows the approach adopted earlier by Marshall, Cox and Evans, but a new shear-lag model that accounts for the matrix shear deformation above the slipping region is used here to derive the relationship between the crack opening displacement and the crack surface closure traction. The inclusion of the matrix shear deformation above the slipping region significantly affects the calculated crack tip stress intensity factor and the prediction of the critical stress at the propagation of the crack. Illustrative examples are cited using three available composite systems of SiC-borosilicate, C-borosilicate and Nicalon-lithium-aluminosilicate (LAS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call