Abstract
Phosphorus limits primary productivity in many (Sub-)Arctic ecosystems and may constrain biological carbon sequestration. Iron (III) oxides strongly bind phosphate in soils but can dissolve under flooded, reducing conditions induced by permafrost thaw and ground collapse. The ability for iron to regulate phosphate storage and solubility in thawing permafrost landscapes remains unclear. Here, iron-rich sediments containing iron oxides and organic-bound iron were incubated with or without added phosphate in soils along a permafrost thaw gradient to evaluate how iron-phosphate associations respond to thaw-induced redox shifts. Iron oxides partially dissolved and released sorbed phosphate when incubated in soils underlain by degraded permafrost. Iron complexed by organic matter remained stable but provided no phosphate binding capacity. Phosphate addition enhanced iron oxide dissolution and phosphorus concentrations in associated microbial biomass. Our study demonstrates that the capacity for iron oxides to immobilize and retain phosphate in permafrost peatlands decreases with permafrost thaw.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.