Abstract

AbstractArctic and boreal ecosystems are experiencing pronounced warming that is accelerating decomposition of soil organic matter and releasing greenhouse gases to the atmosphere. Future carbon storage in these ecosystems depends on the balance between microbial decomposition and primary production, both of which can be regulated by nutrients such as phosphorus. Phosphorus cycling in tundra and boreal regions is often assumed to occur through biological pathways with little interaction with soil minerals; that is, phosphate released from organic molecules is rapidly assimilated by plants or microorganisms. In contrast to this prevailing conceptual model, we use sequential extractions and spectroscopic techniques to demonstrate that iron (oxyhydr)oxides sequester approximately half of soil phosphate in organic soils from four arctic and boreal sites. Iron (III) (oxyhydr)oxides accumulated in shallow soils of low‐lying, saturated areas where circumneutral pH and the presence of a redox interface promoted iron oxidation and hydrolysis. Soils enriched in short‐range ordered iron oxyhydroxides, which are susceptible to dissolution under anoxic conditions, had high phosphate sorption capacities and maintained low concentrations of soluble phosphate relative to soils containing mostly organic‐bound iron or crystalline iron oxides. Thus, substantial quantities of phosphorus in these organic soils were associated with minerals that could reduce bioavailability but potentially also serve as phosphorus sources under anoxic conditions. The implication of this finding is that mineral surfaces effectively compete with biological processes for phosphate and must be considered as a nutrient regulator in these sensitive ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.