Abstract
Mg-Al-Si-O glassy systems have a great importance in a wide range of industrial applications, specifically as an electrolyte for molten oxide electrolysis processes in steelmaking. Understanding how the iron oxidation state of the raw material (Fe2+/Fe3+) and its corresponding amount influence this glassy system's properties will be the aim of the current work. Iron oxides (as Fe2O3 or Fe3O4) were used to dope Mg-Al-Si-O system obtaining amorphous materials through an unconventional method: Laser Floating Zone (LFZ). Above 8% mol of Fe formation of magnetic phases or iron clusters, were observed in the glass matrix. Samples with Fe2O3 showed a higher crystal concentration, when compared with Fe3O4. The electron paramagnetic resonance measurements show a strong dependence on the iron source (Fe3O4 or Fe2O3). In addition, the magnetization decreases linearly with iron content, independently of iron oxidation state, except for samples with a higher concentration of Fe2O3(15% mol), due to sample crystallization. Moreover, with Fe3O4 as raw material there is an improvement (~250 times) of the electrical conductivity when compared with Fe2O3. The results show that the presence of Fe2+ on the glass influences the electrical conductivity, which could have impact in the efficiency of molten oxide electrolysis process.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have