Abstract

Iron oxidation state and environment in magmas affect their phase diagram and their properties, including viscosity and density, which determine magma mobility and eruptive potential. In turn, magma composition, pressure, temperature and oxygen fugacity affect iron oxidation state and coordination, potentially leading to complex feedbacks associated with magma ascent, degassing and eruption. While equilibrium experiments and models have led to a deep understanding of the role of iron in melts, our knowledge of the effects of disequilibrium processes on iron oxidation state and its structural role in lavas and magmas remains limited. Accordingly, we performed a series of dynamic disequilibrium experiments on a natural melt composition (a phonolite lava from Erebus volcano, Antarctica) at atmospheric pressure, in which oxygen fugacity and temperature were controlled and varied. During the experiments, we continuously measured iron oxidation and coordination using Fe K-edge dispersive X-ray Absorption Spectroscopy (XAS). We found that iron oxidation state changes in the phonolite melt are reversible and well reproduced by existing models. Changes in iron oxidation state are driven by joint diffusion of alkali cations and oxygen anions at magmatic temperatures (~ 1000 °C for Erebus phonolite). However, redox diffusion timescales are too slow for any significant oxygen exchange with the atmosphere at the lava/air interface or via air entrainment. Turning to iron coordination, while Fe2+ and Fe3+ are present mostly in an average five-fold coordination, complex coordination variations decoupled from redox changes were detected. The data suggest transitions between Fe3+ in four-fold and six-fold coordination prior to reduction or as a consequence of oxidation. This questions the possible implication of Fe coordination changes in triggering crystallisation of magnetite nanolites upon magma ascent, and, through such crystallisation events, in promoting magma explosivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.