Abstract
For the last thirty years, ion milling has been an indispensable part of preparing TEM specimens in the physical sciences. While great improvements have been made in our ability to thin most materials to the point where ion milling may not be a requirement, there will still be a need to utilize ion milling to clean and polish specimens and to provide small amounts of incremental thinning as needed. Thanks mainly to the work of Bama we now understand a great deal about the physics of ion milling. We also benefit from the works of a number of investigators who have studied the artifacts produced by ion milling (see Barber for a review).Ion milling is a subset of the topic “dry etching,” which consists of two major categories: glow discharge methods and ion beam methods. Glow discharge methods include plasma etching, reactive ion etching, and glow discharge sputter etching. These techniques have little application in TEM specimen preparation aside from surface cleaning. The reactive ion etching literature is a source for suggesting gas/specimen combinations to perform chemically-assisted ion beam etching (CAIBE), to be discussed below. The other major dry etching category, ion beam methods, includes ion milling, reactive ion beam etching, and CAIBE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.