Abstract

A solution-type ion beam source was fabricated to utilize polyatomic anions as well as polyatomic cations that are stable in solutions. The ion source consists of an electrospray section at atmospheric pressure and a vacuum section with a differential pumping system. To demonstrate the beam generation of cations or anions, ethanol solution containing a room-temperature molten salt (i.e., an ionic liquid) was tested. The ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, consists of a polyatomic cation, [C8H20ON]+, and a polyatomic anion, [C2F6NO4S2]-. Ions produced at atmospheric pressure were passed through an aperture into a vacuum chamber and then transported to a target. The effects of the aperture dimensions were investigated in the range from 50 to 200 µm in diameter and 0.25 to 1 mm in thickness. The ratio of current passing through the aperture into the vacuum chamber to the total electrosprayed current was on the order of 10-3 to 10-5. The ratio increased with increasing aperture diameter. A reduction in the aperture thickness also improved the ratio. Beam current increased with applied voltage in both positive-ion and negative-ion modes. It was demonstrated that stable negative-ion beams as well as positive-ion beams on the order of pA were produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.