Abstract

The repeated replication of cells shortens telomeres, culminating in their instability, after which most cells cease to replicate and die. However, a small fraction of the cells become immortalized by maintaining telomeres with activated telomerase activity. It has been proposed that WRN helicase encoded by the WRN gene, the causative gene of Werner syndrome (WS), is required for immortalization by the telomeric crisis pathway (TCP) in a system that uses lymphoblastoid cell lines transformed by the Epstein-Barr virus. Taken together, these characteristics indicate that WRN helicase is also required for the immortalization of epithelial cells by TCP and consequent carcinogenesis, suggesting that the tumorigenesis of epithelial cells by TCP is suppressed in WS lacking the WRN helicase function. Notably, in WS the pathway of alternative lengthening of telomeres without activation of telomerase activity has been suggested to be involved in immortalization and tumorigenesis. This factor is consistent with the abundance of non-epithelial cancers in WS in that the ratio of epithelial to non-epithelial cancers is approximately 1:1 in WS patients compared to 10:1 in the general population. A hypothetical scheme showing the role of WRN helicase in immortalization by means of the supposed 'breakage-fusion-bridge cycle' of chromosomes at telomeric crisis is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.