Abstract

Single-crystalline CVD diamond films have excellent electrical and material properties with potential applications in high power, high voltage and high frequency applications that are out of reach for conventional semiconductor materials. For realization of efficient devices (e.g. MOSFET), finding a suitable dielectric is essential to improve the reliability and electrical performance of devices. In the current study, we present results from surface passivation studies by high-k dielectric materials such as aluminum oxide and hafnium oxide deposited by ALD on intrinsic and boron doped diamond substrates. The hole transport properties in the intrinsic diamond films were evaluated and compared to unpassivated films using the lateral time-of-flight technique. Also, for the advancement of diamond-based electronic devices, the fabrication of MOSFET is crucial as this device finds applications in numerous fields of power electronics and high frequency systems. The MOS capacitor structure which forms the basic building block of the MOSFET is discussed. Inversion phenomenon crucial for the operation of MOSFET observed for the first time in boron doped diamond will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.