Abstract

Summary form only given. Wide band gap semiconductor of GaN and its related materials are promising for future power and high frequency applications. In particular, the GaN high electron mobility transistor (HEMT) grown on large-size Si substrate is suitable for low-lost and high power switching applications. The GaN HEMT could be fabricated into convertors and invertors for electrified vehicle (EV). In order to achieve GaN HEMT device with high efficiency, various issues have to be considered. These include the careful design of material structure and device layout. Furthermore, surface passivation techniques are critical for reducing dynamic on-resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">on</sub> ) and improving reliability. For safety purpose, a normally-off device is required. Thus, the pros and cons of normally-off device fabrication approaches such as gate-recessed, p-GaN cap and F-plasma treatment will be discussed. The possibility of using fully-copper-based metallization will also be addressed. The copper metallization can reduce the fabrication cost effectively by replacing the conventional gold metallization. Finally, power module is demonstrated by employing the GaN HEMTs and Schottky barrier diodes. For future RF power application, GaN HEMTs on SiC substrate are fabricated. The GaN material grown on SiC can achieve better crystal quality and the HEMT devices are also beneficial from better thermal dissipation due to high thermal conductivity SiC substrate. GaN HEMT on SiC could be used in future high frequency applications such as formilitary phased array radar and civilian 4 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sup> -generation base station. Besides the AlGaN/GaN HEMT structure, new material structures such as InAlN/GaN and AlN/GaN are also demonstrated. These structures have great potential for very high frequency (>300 GHz) and high power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.