Abstract

Non-stoichiometric copper chromium delafossite has lately attracted a high interest in the community of oxide materials due to its high p-type electrical conductivity and adequate transparency in the visible range. This study reports record electrical conductivity of Cu0.66Cr1.33O2 thin films deposited by chemical vapour deposition and investigates their properties. As-deposited samples show conductivities greater than 100Scm−1 and carrier concentrations around 1021cm−3, highest reported value for any non-intrinsically doped delafossite system. A new structural defect consisting in Cu-vacancies chains is identified. This defect, never observed or presumed before, heals upon annealing at 900°C under argon environment, resulting in an electrical conductivity's reduction of six orders of magnitude. Through a wide-range of structural, chemical and transport measurement techniques, a structure-defect-property correlation of this system is established and the metastability of the non-stoichiometry induced defects is investigated. The possibility of manipulating the defects and carrier concentrations through high-temperature annealing and the outstanding electrical properties associated with the large-scale deposition technique and moderate deposition temperature could be of great technological interest. This material could find important applications as hole injection or extraction layer in all-oxide photovoltaic and light emitting devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.