Abstract

This paper focuses on the influence of the effective intra-grain minority charge carrier diffusion length and surface recombination velocity at grain boundaries on solar cell parameters. Both can be extracted in principle from Light- and Electron Beam Induced Current measurements (LBIC and EBIC). Multicrystalline floatzone (mc FZ) silicon with different grain sizes was processed to solar cells with and without hydrogenation step, followed by LBIC and EBIC characterization. A theoretical model is used which can be applied to measured LBIC or EBIC profiles in order to obtain values for the effective intra-grain diffusion length and the recombination velocity at grain boundaries. Efficiencies reached on the processed solar cells (up to 16.0%) are the highest reported so far for material with such a small grain size, and the positive effect of hydrogenation can clearly be seen. The obtained results are very useful for other cost effective small grained mc silicon materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.