Abstract
Superconducting fault current limiters (SFCLs) are attracting increasing attention due to their potential for use in modern smart grids or micro grids. Thanks to the unique non-linear properties of high-temperature-superconducting (HTS) tapes, an SFCL is invisible to the grid with faster response compared to traditional fault current limiters. The quench recovery characteristic of an HTS tape is fundamental for the design of an SFCL. In this work, the quench recovery time of an HTS tape was measured for fault currents of different magnitudes and durations. A global heat transfer model was developed to describe the quench recovery characteristic and compared with experiments to validate its effectiveness. Based on the model, the influence of tape properties on the quench recovery time was discussed, and a safe margin for the impact energy was proposed.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have