Abstract
AbstractCarbon nanotubes (CNTs) and graphene platelets (GPLs) are ideal fillers to synthetize advanced nanomaterial composites due to their excellent mechanical and thermal properties. At present, there lacks of investigations on the transient coupling thermoelastic problems of the micro/nanostructures made of composites reinforced by CNTs or GPLs. To fill this gap, the thermoelastic wave propagation of a nanocomposite microbeam reinforced by both CNTs and GPLs is studied in the context of nonlocal strain gradient (NSG) elasticity and Green and Naghdi's (G–N) generalized thermoelastic theory for the first time. The Halpin–Tsai micromechanical model is employed to determine the effective elastic modulus of the composite microbeam. By assuming the wave‐type solutions, the equations are solved and the dispersion relation between frequency and wave number and the relation between phase velocity and wave number are determined respectively. In calculation, the above two relations are fully investigated and comparisons on them under different parameters, besides unidirectional pattern for CNTs and GPLs, three different functionally graded (FG) distribution patterns, that is, FG‐A type, FG‐X type, and FG‐O type, are considered. Concurrently, the study evaluates the impacts of the key factors such as the non‐dimensional gradient coefficient, the non‐dimensional nonlocal parameter, and the mass fractions of GPLs on the frequencies and phase velocity. The results show that among the three patterns the frequency is significantly influenced by FG‐A type. The non‐dimensional nonlocal parameter is negatively correlated with the frequency and phase velocity. The non‐dimensional gradient coefficient and the mass fraction of GPLs are positively correlated with the frequency and phase velocity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have