Abstract

There are various secondary flow types in turbodrill’s blade cascades, and all kinds of secondary flow have a significant effect on flow loss. In this paper, the stator cascade of φ160 mm turbodrill is taken as the research object, and the CFD method is used to analyze the secondary flow and its evolution. The origin and evolution mechanism of secondary flow is explained from the flow mechanism. The results show that when the working rotary speed is lower than the design rotary speed, the secondary flows are composed of suction surface separation vortex, horseshoe vortex, and passage vortex coexisting. The intensity of secondary flows increases with the decrease of rotary speed. When the working rotary speed is near the design rotary speed, the secondary flows include horseshoe vortex, passage vortex, and corner vortex. When the working rotary speed is higher than the design rotary speed, the secondary flows consist of pressure surface separation vortex and suction surface trailing edge separation vortex. Regardless of rotary speed, secondary flow intensity in the shroud region is greater than the hub region, which has a greater influence on the mainstream. In addition, compared with high rotary speeds, secondary flow intensity is greater at low rotary speeds, resulting in greater flow losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.