Abstract

Fabrication of functionally graded material (FGM) has been studied using dual wire WAAM-TIG (wire arc additive manufacturing - tungsten inert gas) process. The experimental research aims to perform the feasibility study of different designs of FGMs, including continuous gradient (CG-FGM) and sandwich structures (SW-FGMs). The weight percentage of two wire materials, SS316L and IN625, was precisely controlled using individual wire feeding systems. Process parameters were identified to obtain the defect-free deposition for the desired combination of weight percentage. The governing elements, i.e., Ni and Fe, showed a gradual variation in the case of CG-FGM and alternate peaks for SW-FGMs while examined using energy-dispersive X-ray spectroscopy (EDS). The alternate material distinction was noticeable with the increase in the number of individual layers for each set of SW-FGMs. The microstructure evolution of CG-FGM showed a smooth transition from equiaxed to columnar dendrites along the build direction, while SW-FGM showed heterogeneous behaviour. The hardness was steadily increasing in CG-FGMs and formed a wavy pattern in SW-FGMs. X-ray diffraction (XRD) analysis confirmed the formation of the austenitic phase, and variation in peak heights correlates to the change in microstructure and hardness. The conducted tribological study showed the specific wear rate gradually decreased with an increase of Ni content in CG-FGM, whereas in SW-FGM, it showed a strong dependency on the adopted design. The alloying effect in SW-FGM with different design modalities and its comparison with equal weight percentages were also studied in detail and presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.