Abstract
Optimizing global geometric features of unit cells and their spatial arrangements have been well studied in multistable energy-absorbing architected materials (MEAMs), yet their optimized geometries could lead to highly complex features that require expensive additive manufacturing techniques. In this study, we introduce a generalized design strategy to adjust localized thickness variation of thin curved beams in MEAMs. We numerically identify the optimal non-uniform modulation parameter for maximizing energy trapping capacity across MEAM cells, arrays, and cylinders. Then, quasi-static compression and drop impact tests on MEAM cylinders with non-uniform designs are conducted to prove the proposed method's effectiveness in achieving equivalent energy-absorbing abilities with the same material consumption. Overall, we believe that our easy-to-implement strategy can be applied to any type of MEAM with slender beam elements and embedded into energy-absorbing devices and structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.