Abstract

The total ionizing dose (TID) radiation effects of partially-depleted (PD) silicon-on-insulator (SOI) devices fabricated in a commercial 0.2µm SOI process were investigated. The experimental results show an original phenomenon: the “ON” irradiation bias configuration is the worst-case bias for both front-gate and back-gate transistors. To understand the mechanism, a charge distribution model is proposed. We consider that the performance degradation of the devices is due to the radiation-induced positive charge trapped in the bottom corner of Shallow Trench Isolation (STI) oxide. In addition, by comparing the irradiation responses of short and long channel devices under different drain biases, the short channel transistors show a larger degeneration of leakage current and threshold voltage. The dipole theory is introduced to explain the TID enhanced short channel effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.