Abstract

Radiation enhanced drain induced barrier lowering (DIBL) effect under different bias conditions was experimentally observed and verified by 3D simulation for deep submicron MOSFETs with shallow trench isolation (STI) oxides. The off-state leakage current increased significantly after total ionizing dose (TID) above 200 krad(Si) for PASS ,OFF and ON bias condition. The irradiated devices exhibited enhanced DIBL effect, that is the off-state leakage current increases with drain voltage and DIBL parameter increases with TID. The oxide trapped charge in the STI sidewall enhances the DIBL by decreasing the drain to gate coupling, enhancing the electric field near the STI corner, and increasing the surface potential of lowly doped substrate along STI sidewall. A simple dipole theory describing the enhanced DIBL phenomenon is introduced. The phenomenon is a result of the electrostatic effect, which concentrates drain field on channel into the source along shallow trench isolation oxide. Effective non-uniform charge distribution is applied in the 3D simulation for the radiation enhanced DIBL effect. Good agreement between experiment and simulation results is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call