Abstract
The effects of total ionizing dose (TID) irradiation on the inter-device and intra-device leakage current in a 180-nm flash memory technology are investigated. The positive oxide trapped charge in the shallow trench isolation (STI) oxide is responsible for the punch-through leakage increase and punch-through voltage decrease. Nonuniform radiation-induced oxide trapped charge distribution along the STI sidewall is introduced to analyze the radiation responses of input/output (I/O) device and high voltage (HV) device. At low dose level, the inversion near the STI corner caused by the trapped charge occurs more easily due to the lower doping concentration in this region, which gives rise to the subthreshold hump effect. With total dose level increase, more charge at deep region of the STI oxide is accumulated, predominating the intra-device off-state leakage current. It has been discussed that the STI corner scheme and substrate doping profile play important roles on influencing the device’s performance after radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.