Abstract
Purpose This study aims to investigate the tribological performance of neat polyamide-imide (PAI) and PAI composite (PAI + 12% graphite + 3% polytetrafluoroethylene [PTFE]) under varying mediums and conditions, including dry sliding, distilled water and seawater lubrication, to determine their suitability for high-stress applications. Design/methodology/approach Tribological tests were conducted using a pin-on-disc setup with AISI 316 L stainless steel (SS) as counterface. Experiments were carried out under loads of 150 and 300 N and sliding speeds of 1.5 and 3.0 m/s. Values of temperatures, friction coefficients and wear rates were recorded to analyze the effect of fillers and lubrication mediums. Findings The PAI composite outperformed the neat PAI under all conditions, showing significant reductions in friction coefficients and wear rates. Seawater lubrication yielded the best results, achieving friction coefficients of 0.05 and 0.01 and specific wear rates of 18.10−16 m²/N and 1.10 −15 m²/N, for neat PAI and PAI composite, respectively. Graphite and PTFE fillers enhanced lubrication, reduced surface temperatures and mitigated abrasive and adhesive wear mechanisms. Superior cooling and lubrication effects of the seawater contributed to these improvements. Originality/value Previous studies mainly focused on dry sliding and distilled water lubrication for the PAI and its composites, with no research on the seawater conditions. This study compares the tribological behaviors of the neat PAI and PAI composite against AISI 316 L SS under dry sliding, distilled water and seawater lubrication. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2024-0302/
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have